Feeds:
Posts
Comments

Posts Tagged ‘livescience’

Stephen Hawking died today (March 14), leaving behind a massive legacy of work as an astrophysicist, science communicator, activist, and figure of pop culture admiration. And on the day of his death, a question he raised and worked on until the last years of his life remains unanswered: Can information really be lost to the universe?

Hawking’s most famous paper, “Black Hole Explosions?,” published 44 years ago in 1974, took a hatchet to the whole notion of black holes as physicists had previous understood them. And it was Hawking’s first whack at that basic question.

“Classically, a black hole should be ‘perfectly cold’ in the sense that it absorbs everything but emits nothing. This is how they were understood in the early 1970s,” Robert McNees, a physicist at Loyola University in Chicago, wrote in an email.

A black hole like that would radiate energy no matter could escape escape from it. It would just… exist, cold, silent, and eternal. Hawking’s paper made the black holes alive ­— and possibly mortal.

“When Stephen considered quantum mechanical effects in the mid-70s, he discovered that black holes should, in principle, radiate as if they were thermal objects with a temperature,” McNees told Live Science. “If they radiate energy then their mass will decrease. And he found that as this happens, as they shrink, their temperature goes up and they radiate even faster.”

Eventually, perhaps, the black hole would disappear entirely, or shrink to a little nubbin. Without fully reconciling relativity and quantum mechanics in a robust theory of “quantum gravity” (what physicists call a “theory of everything”), the final stage of that black hole evaporation remains a mystery.

“The problem is that, according to his calculations, the radiation is perfectly thermal. It doesn’t retain any information about the state of the material that formed the black hole, and this would violate a fundamental rule in quantum mechanics,” McNees wrote.

Quantum physics requires that the whole future and past of every particle should be, in principle, possible to figure out and link through a series of chained, causal, probabilistic events. But if a black hole release an undifferentiated soup of particles with their information — their histories — unrecoverably erased, then that requirement is fundamentally broken.

“[Physicists call this] the ‘black hole information paradox,’ and attempts to resolve it have driven much of the work in quantum gravity since it was first articulated,” McNees wrote.

Hawking was already an accomplished physicist by 1974. And many brief biographies imply that, following the publication of his 1988 popular science book “A Brief History of Time,” his most important scientific work was behind him. But Hawking continued to produce significant and controversial scientific papers until as recently as this decade, wrangling with the paradox he introduced decades earlier.

The most dramatic late-career paper Hawking wrote suggested the black holes as they’ve classically been understood don’t exist at all.

In “Information Preservation and Weather Forecasting for Black Holes,” published in 2014, he suggested that the “event horizon” around black holes, the point beyond which even light could not escape, doesn’t really exist. Instead, he wrote, there’s simply an “apparent” horizon of trapped light, which could fade away and allow the light to escape.

“The absence of event horizons mean that there are no black holes — in the sense of regimes from which light can’t escape to infinity,” Hawking wrote.

He also suggested some fundamental conceptual problems with a number of features physicists had attributed to black holes, like “firewalls” around their boundaries that destroy observers who try to enter.

That wasn’t Hawking’s final word on science. As recently as 2016, Hawking published a paper with the University of Cambridge physicist Malcolm Perry and Harvard University physicist Andrew Strominger called “Soft Hair on Black Holes.”

The research team argued that black holes are surrounded by “soft” or zero-energy particles, which they call hair. That hair, they wrote, stores the lost information of particles emitted by black holes on “holographic plates” beyond the black holes’ boundary regions. So the information, while displaced, is never truly lost.

“A complete description of the holographic plate and resolution of the information paradox remains an open challenge, which we have presented new and concrete tools to address,” they wrote.

Even near the end of his life, Hawking remained very much a working scientist, presenting ideas that advanced his field, and ideas his colleagues rejected.

“It’s my impression that the 2014 paper is not widely accepted. The 2016 paper, on the other hand, which is work with Perry and Strominger, is a direction that people are still actively working on,” McNees wrote.

“The black hole information paradox has been one of the defining questions for people working on quantum gravity. And, as it remains unanswered, I think it remains the most interesting question that [Hawking] raised.” (Ack: LiveScience/ Stephen Hawking Never Answered His ‘Most Interesting’ Scientific Question/Rafi Letzter of March 14,2018)

He was a visionary alright. I am more concerned with the question that remains unanswered:  the Information Paradox which the existence of black holes threw up shall be vigorously followed yet more riddles grist for the mills namely Scientific Inquiry..

Information can never be lost the idea was first proposed by Einstein. We have black holes, white holes, worm holes. These are all highways, back alleys, hyper loops for information to be sent across. Only problem for Science is that they do not know the addressee. May be out there is a Celestial Post office and one sitting there with a seal ready, Address Unknown, Return to Sender.

Benny

 

 

Advertisements

Read Full Post »

Scientists in the field of bioinformatics have designed headsets with advanced sensors to read electrical brain activity that can recognize facial expressions, and the thoughts of a person. Sitting away from home you may send instructions to the plumber and glazier to attend to the chores around the house. Those who ride the gravy train in company time may not get to write a best seller for the boss would have changed the password to prevent other activities coming in between.
Digital divide closes
In five years, IBM said, the gap between information haves and have-nots will narrow considerably due to advances in mobile technology; by then 80 percent of the current global population will have a mobile device.
This will empower people without a lot of spending power, they believe.
Only such power without money will be like froth on which you cannot get drunk. Champagne bottles will be still opened among the one percenters and froth for the man on the street.

In India, IBM used speech technology and mobile devices to enable rural villagers who were illiterate to pass along information through recorded messages on their phones. With access to information that was not there before, villagers could check weather reports to help them decide when to fertilize crops, to know when doctors were coming to town, and to find the best prices for their crops or merchandise.Astrolegers will be pestered to know sex of the next baby. If it is a girl baby ‘is there a way to avert the calamity?’
Junk becomes gems
In five years, unsolicited advertisements may feel so personalized and relevant that you’ll think spam is dead. At the same time, spam filters will be so precise that you’ll never be bothered by unwanted sales pitches again.
Just what I wanted to hear. Our wishes have become redundant and Technology lets you take Pepsi even if you happen to have a craving for Coke at a precise moment.( ack: liveScience-Ned Smith 9-12-2011)
benny

Read Full Post »